当前位置:首页 > 教学资料 > 教案

二次函数教案

时间:2025-08-10 21:59:14
二次函数教案

二次函数教案

作为一名无私奉献的老师,通常会被要求编写教案,教案有利于教学水平的提高,有助于教研活动的开展。那么教案应该怎么写才合适呢?下面是小编精心整理的二次函数教案,希望能够帮助到大家。

二次函数教案1

知识技能

1. 能列出实际问题中的二次函数关系式;

2. 理解二次函数概念;

3. 能判断所给的函数关系式是否二次函数关系式;

4. 掌握二次函数解析式的几种常见形式.

过程方法

从实际问题中感悟变量间的二次函数关系,揭示二次函数概念.学生经历观察、思考、交流、归纳、辨析、实践运用等过程,体会函数中的常量与变量,深刻领悟二次函数意义

情感态度

使学生进一步体验函数是描述变量间对应关系的重要数学模型,培养学生合作交流意识和探索能力。

教学重点

理解二次函数的意义,能列出实际问题中二次函数解析式

教学难点

能列出实际问题中二次函数解析式

教学过程设计

教学程序及教学内容 师生行为 设计意图

一、情境引入

播放实际生活中的有关抛物线的图片,概括性的介绍本章.

二、探究新知

㈠、用函数关系式表示下列问题中变量之间的关系:

1.正方体的棱长是x,表面积是y,写出y关于x的'函数关系式;

2.n边形的对角线条数d与边数n有什么关系?

3.某工厂一种产品现在的年产量是20件,计划今后两年增加产量,如果每年都必上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?

㈡观察所列函数关系式,看看有何共同特点?

㈢类比一次函数和反比例函数概念揭示二次函数概念:

一般地,形如 的函数,叫做二次函数。其中,x是自变量,a,b,c分别是函数表达式的二次项系数、一次项系数和常数项。

实质上,函数的名称都反映了函数表达式与自变量的关系.

三、课堂训练(略)

四、小结归纳:

学生谈本节课收获

1.二次函数概念

2.二次函数与一次函数的区别与联系

3.二次函数的4种常见形式

五、作业设计

㈠教材16页1、2

㈡补充:

1、①y=-x2②y=2x③y=22+x2-x3④m=3-t-t2是二次函数的是

2、用一根长60cm的铁丝围成一个矩形,矩形面积S(cm2)与它的一边长x(cm)之间的函数关系式是xxxxxxxxxxxx.

3、小李存入银行人民币500元,年利率为x%,两年到期,本息和为y元(不含利息税),y与x之间的函数关系是xxxxxxx,若年利率为6%,两年到期的本利共xxxxxx元.

4、在△ABC中,C=90,BC=a,AC=b,a+b=16,则RT△ABC的面积S与边长a的关系式是xxxx;当a=8时,S=xxxx;当S=24时,a=xxxxxxxx.

5、当k=xxxxx时, 是二次函数.

6、扇形周长为10,半径为x,面积为y,则y与x的函数关系式为xxxxxxxxxxxxxxx.

7、已知s与 成正比例,且t=3时,s=4,则s与t的函数关系式为xxxxxxxxxxxxxxx.

8、下列函数不属于二次函数的是( )

A.y=(x-1)(x+2) B.y= (x+1)2 C.y=2(x+3)2-2x2 D.y=1- x2

9、若函数 是二次函数,那么m的值是( )

A.2 B.-1或3 C.3 D.

10、一块草地是长80 m、宽60 m的矩形,在中间修筑两条互相垂直的宽为x m的小路,这时草坪面积为y m2.求y与x的函数关系式,并写出自变量x的取值范围.

二次函数教案2

一.学习目标

1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。

2.了解二次函数关系式,会确定二次函数关系式中各项的系数。

二.知识导学

(一)情景导学

1.一粒石子投入水中,激起的波纹不断向外扩展,扩大的圆的面积S与半径r之间的函数关系式是 。

2.用16米长的篱笆围成长方形的生物园饲养小兔,怎样围可使小兔的活动范围较大?

设长方形的长为x 米,则宽为 米,如果将面积记为y平方米,那么变量y与x之间的函数关系式为 .

3.要给边长为x米的正方形房间铺设地板,已知某种地板的价格为每平方米240元,踢脚线的价格为每米30元,如果其他费用为1000元,门宽0.8米,那么总费用y为多少元?

在这个问题中,地板的费用与 有关,为 元,踢脚线的费用与 有关,为 元;其他费用固定不变为 元,所以总费用y(元)与x(m)之间的函数关系式是 。

(二)归纳提高。

上述函数函数关系有哪些共同之处?它们与一次函数、反比例函数的关系式有什么不同?

一般地,我们称 表示的函数为二次函数。其中 是自变量, 函数。

一般地,二次函数 中自变量x的取值范围是 ,你能说出上述三个问题中自变量的取值范围吗?

(三)典例分析

例1、判断:下列函数是否为二次函数,如果是,指出其中常数a.b.c的值.

(1) y=1— (2)y=x(x-5) (3)y= - x+1 (4) y=3x(2-x)+ 3x2

(5)y= (6) y= (7)y= x4+2x2-1 (8)y=ax2+bx+c

例2.当k为何值时,函数 为二次函数?

例3.写出下列各函数关系,并判断它们是什么类型的函数.

⑴正方体的表面积S(cm2)与棱长a(cm)之间的函数关系;

⑵圆的面积y(cm2)与它的周长x(cm)之间的函数关系;

⑶某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y(元)与所存年数x之间的函数关系;

⑷菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系.

三.巩固拓展

1.已知函数 是二次函数,求m的值.

2. 已知二次函数 ,当x=3时,y= -5,当x= -5时,求y的值.

3.一个长方形的长是宽的1.6倍,写出这个长方形的面积S与宽x之间函数关系式。

4.一个圆柱的高与底面直径相等,试写出它的表面积S与底面半 ……此处隐藏16116个字……究。

(在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)

三. 尝试模仿、巩固提高

让我们先从最简单的二次函数y=ax2入手展开研究

1. 1. 尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢?

请同学们画出函数y=x2的图象。

(学生分别画图,教师巡视了解情况。)

二次函数教案15

一、教材分析

1、教材的地位和作用

二次函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,在初中的学习中已经给出了二次函数的图象及性质,学生已经基本掌握了二次函数的图象及一些性质,只是研究函数的方法都是按照函数解析式---定义域----图象----性质的方法进行的,基于这种情况,我认为本节课的作用是让学生借助于熟悉的函数来进一步学习研究函数的更一般的方法,即:利用解析式分析性质来推断函数图象。它可以进一步深化学生对函数概念与性质的理解与认识,使学生得到较系统的函数知识和研究函数的方法,站在新的高度研究函数的性质与图象。因此,本节课的内容十分重要。

2、教学的重点和难点

教学重点:使学生掌握二次函数的概念、性质和图象;从函数的性质推断图象的方法。

教学难点:掌握从函数的性质推断图象的方法。

二、目标分析

按照新课标指出三维目标,根据任教班级学生的实际情况,本节课我确定的教学目标是:

1、知识与技能:掌握二次函数的性质与图象,能够借助于具体的二次函数,理解和掌握从函数的性质推断图象的方研究法。

2、过程与方法:通过老师的引导、点拨,让学生在分组合作、积极探索的氛围中,掌握从函数解析式、性质出发去认识函数图象的高度理解和研究函数的方法。

3、情感、态度、价值观:让学生感受数学思想方法之美、体会数学思想方法之重要;培养学生主动学习、合作交流的意识等。

三、教法学法分析

遵循“教师的主导作用和学生的主体地位相统一的教学规律”,从教师的角色突出体现教师是设计者、组织者、引导者、合作者,经过教师对教材的分析理解,在教师的组织引导和师生互动过程中以问题为载体实施整个教学过程;在学生这方面,通过自主探索、合作交流、归纳方法等一系列活动为主线,感受知识的形成过程,拓展和完善自己的认知结构,进而体现出教学过程中教师与学生的双主体作用。

四、教学过程分析

根据新课标的理念,我把整个的教学过程分为六个阶段,即:创设情景、提出问题

师生互动、探究新知

独立探究,巩固方法

强化训练,加深理解

小结归纳,拓展深化

布置作业,提高升华

环节1本节课一开始我就让学生直接总结出二次函数的性质与图象形状,在学生回答后,以有必要再重复吗?编者的失误?还是另有用意呢?的设问来激发学生的求知欲,在学生感觉很疑惑的时候马上进入环节2:试作出二次函数

的图象。目的是充分暴露学生在作图时不能很好的结合函数的性质而出现的错误或偏差问题,突出本节课的重要性。在学生总结交流的基础上教师指出学生的错误并以设问的方式提出本节课的目标:如何利用函数性质的研究来推断出较为准确的函数图象,进而引导学生进入师生互动、探究新知阶段。

在这个阶段,我引用课本所给的例题1请同学们以学习小组为单位尝试完成并作出总结发言。目的是:让学生充分参与,在合作探究中让学生最大限度地突破目标或暴露出在尝试研究过程中出现的分析障碍,即不能很好的把握函数的性质对图象的影响,不能把抽象的性质与直观的图象融会贯通,这样便于教师在与学生互动的过程中准确把握难点,各个击破,最终形成知识的迁移。在学生探讨后,教师选小组代表做总结发言,其他小组作出补充,教师引导从逐步完善函数性质的分析。其中,学生对于对称轴的确定、单调区间及单调性的分析阐述等可能存在困难。这时教师可以利用对解析式的分析结合多媒体演示引导学生得到分析的思路和解决的方法,在师生互动的过程中把函数的性质完善。之后进入环节3:再次让学生利用二次函数的性质推断出二次函数的图象,强化用二次函数的性质推断图象的关键。进而突破教学难点。让学生真正实现知识的迁移,完成整个探究过程,形成较为完整的新的认知体系.当然,在这个过程中可能会有学生提出图象为什么是曲线而不是直线等问题,为了消除学生的疑惑,进入第4个环节:教师要简单说明这是研究函数要考虑的一个重要的性质,是函数的凹凸性,后面我们将要给大家介绍,同学们可以阅读课本第110页的探索与研究。这样也给学生留下一个思考与探索的空间,培养学生课外阅读、自主研究的能力,增强学生学习数学的积极性.

在以上环节完成后,进入第5个环节:让学生对利用解析式分析性质然后推断函数图象的研究过程进行梳理并加以提炼、抽象、概括,得出研究函数的具体操作过程,使问题得以升华,拓宽学生的思维,将新知识内化到自己的认知结构中去.最终寻求到解决问题的方法。

教学的最终目标应该落实到每一个学生个体的内化与发展,由此让引导学生进入独立探究,巩固方法的阶段。例2在题目的设置上变换二次函数的开口方向,目的是一方面使学生加深对知识的理解,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力.学生在例1的基础上将会目标明确地进行函数性质的研究,然后推断出比较准确的函数图象,使新知得到有效巩固.

通过前面三个阶段的学习,学生应该基本掌握了本节课的相关知识。但对二次函数中系数a、b、c的对二次函数的影响还有待提高,为此我把课本中的例3进行改编,引导学生进入强化训练,加深理解阶段。一方面可以解决学生对奇偶性的质疑,另一方面也可以把学生对二次函数的认识提到新的高度。

第五个阶段:小结归纳,拓展深化。为了让学生能够站在更高的角度认识二次函数和掌握函数的一般研究方法,教师引导学生从两个方面总结。在你对函数图象与性质的关系有怎样的理解方面教师要引导、拓展,明确今天所学习的方法实际上是研究函数性质图象的一般方法,对于一些陌生的或较为复杂的函数只要借助于适当的方法得到相关的性质就可以推断出函数的图象,从而把学生的认知水平定格在一个新的高度去理解和认识函数问题。

最后一个阶段是布置作业,提高升华,作业的设置是分层落实.巩固题让学生复习解题思路,准确应用,以便举一反三.探究题通过对教材例题的改编,供学有余力的学生自主探索,提高他们分析问题、解决问题的能力.

以上六个阶段环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动手操作,动眼观察,动脑思考,亲身经历了知识的形成和发展过程,并得以迁移内化。而最终的探究作业又将激发学生兴趣,带领学生进入对二次函数更进一步的思考和研究之中,从而达到知识在课堂以外的延伸。总之,这节课是本着“授之以渔”而非“授之以鱼”的理念来设计的。

《二次函数教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式